Twisted cyclic homology of all Podleś quantum spheres
نویسندگان
چکیده
منابع مشابه
Twisted cyclic homology of all Podles̀ quantum spheres
We calculate the twisted Hochschild and cyclic homology (in the sense of Kustermans, Murphy and Tuset) of all Podles̀ quantum spheres relative to an arbitary automorphism. Our calculations are based on a free resolution due to Masuda, Nakagami and Watanabe.
متن کاملRelations between Twisted Derivations and Twisted Cyclic Homology
For a given endomorphism on a unitary k-algebra, A, with k in the center of A, there are definitions of twisted cyclic and Hochschild homology. This paper will show that the method used to define them can be used to define twisted de Rham homology. The main result is that twisted de Rham homology can be thought of as the kernel of the Connes map from twisted cyclic homology to twisted Hochschil...
متن کاملTwisted Dirac Operators over Quantum Spheres
We construct new families of spectral triples over quantum spheres, with a particular attention focused on the standard Podleś quantum sphere and twisted Dirac operators.
متن کاملTwisted Configurations over Quantum Euclidean Spheres
We show that the relations which define the algebras of the quantum Euclidean planes Rq can be expressed in terms of projections provided that the unique central element, the radial distance from the origin, is fixed. The resulting reduced algebras without center are the quantum Euclidean spheres SN−1 q . The projections e = e 2 = e are elements in Mat 2n(S N−1 q ), with N = 2n+1 or N = 2n, and...
متن کاملTwisted Hochschild Homology of Quantum Hyperplanes
We calculate the Hochschild dimension of quantum hyperplanes using the twisted Hochschild homology.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2007
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2006.03.006